Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Complexes of germanium bromides with 4-picoline and 3,4-lutidine

Bolte, Hensen and Faber

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Complexes of germanium bromides with 4-picoline and 3,4-lutidine

Michael Bolte,^a* Karl Hensen^b and Alexander Faber^b

^aInstitut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ^bInstitut für Physikalische und Theoretische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 21 September 2000 Accepted 9 October 2000

Data validation number: IUC0000284

The reactions of GeBr_4 with 4-methylpyridine and 3,4dimethylpyridine lead to tetrabromobis(4-methylpyridine)germanium, [GeBr₄(C₆H₇N)₂], and tetrabromobis(3,4-dimethylpyridine)germanium, [GeBr₄(C₇H₉N)₂], respectively. These structures show the same features as the corresponding silicon complexes.

Comment

In recent years, the extension of the coordination sphere of silicon in complexes with organic nitrogen bases has been the subject of numerous studies (Bechstein *et al.*, 1990; Chuit *et al.*, 1993; Kane *et al.*, 1998; Hensen *et al.*, 1998; Hensen, Mayr-Stein, Spangenberg, Bolte & Rühl, 2000). Several complexes of silicon halides are already known, but little is known about adducts of germanium halides (Adley *et al.*, 1972; Bolte *et al.*, 2000) with aromatic nitrogen bases.

We have already published the structure of the addition compound of GeBr₄ with 3,4-dimethylpyridine (Hensen et al., 1999) and we present here two further structures of this kind. Tetrabromobis(4-methylpyridine)germanium, (I), is isomorphous with tetrabromobis(4-methylpyridine)silicon (Hensen, Mayr-Stein, Spangenberg & Bolte, 2000) and tetrachlorobis(4methylpyridine)silicon (Bolte et al., 2000), and tetrabromobis(3,4-dimethylpyridine)germanium, (II), is isomorphous with tetrabromobis(3,4-dimethylpyridine)silicon (Hensen, Mayr-Stein, Stumpf et al., 2000); the molecular geometry of this type of compound has been extensively discussed. As a result of this, we refrain from repeating the discussion of these structures. The present results demonstrate that the reaction of GeBr₄ with aromatic nitrogen bases leads to the same results as the reaction of silicon halides with aromatic nitrogen bases and, furthermore, using GeCl₄ instead of GeBr₄ yields analogous results.

Experimental

Both title compounds were prepared as described by Faber (2000). Single crystals were obtained from chloroform solutions.

Compound (I)

Crystal data

Data collection

Siemens CCD three-circle diffractometer ω scans Absorption correction: empirical (SADABS; Sheldrick, 1996) $T_{\min} = 0.089, T_{\max} = 0.319$ 14 794 measured reflections 1122 independent reflections 869 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.056$ S = 1.0751122 reflections 57 parameters H-atom parameters constrained

Compound (II)

Crystal data [GeBr₄(C₇H₉N)₂] $M_r = 606.53$ Orthorhombic, *Cmca* a = 7.477 (1) Å b = 17.942 (5) Å c = 13.194 (3) Å V = 1770.0 (7) Å³ Z = 4 $D_x = 2.276$ Mg m⁻³ Mo K α radiation Cell parameters from 5051 reflections $\theta = 1-25^{\circ}$ $\mu = 11.401 \text{ mm}^{-1}$ T = 173 (2) K Needle, yellow $0.36 \times 0.16 \times 0.10 \text{ mm}$

$$\begin{split} R_{\rm int} &= 0.0744 \\ \theta_{\rm max} &= 28.27^{\circ} \\ h &= -9 \rightarrow 9 \\ k &= -11 \rightarrow 11 \\ l &= -18 \rightarrow 18 \\ 112 \text{ standard reflections} \\ \text{frequency: 900 min} \\ \text{intensity decay: none} \end{split}$$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0202P)^2 \\ &+ 1.2129P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} < 0.001 \\ \Delta\rho_{max} = 0.48 \ e^{\Lambda^{-3}} \\ \Delta\rho_{min} = -0.64 \ e^{\Lambda^{-3}} \\ Extinction \ correction: \ SHELXL97 \\ Extinction \ coefficient: \ 0.0027 \ (3) \end{split}$$

Mo K α radiation Cell parameters from 3846 reflections $\theta = 1-25^{\circ}$ $\mu = 10.755 \text{ mm}^{-1}$ T = 173 (2) K Plate, yellow $0.22 \times 0.12 \times 0.05 \text{ mm}$

electronic papers

Data collection

Siemens CCD three-circle diffract-	$R_{\rm int} = 0.099$
ometer	$\theta_{\rm max} = 27.84^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: empirical	$k = -23 \rightarrow 23$
(SADABS; Sheldrick, 1996)	$l = -17 \rightarrow 17$
$T_{\min} = 0.200, \ T_{\max} = 0.580$	122 standard reflections
12 371 measured reflections	frequency: 1200 min
1134 independent reflections	intensity decay: none
898 reflections with $I > 2\sigma(I)$	
Defin one out	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0315P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 6.1521P]
$wR(F^2) = 0.077$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.070	$(\Delta/\sigma)_{\rm max} < 0.001$
1134 reflections	$\Delta \rho_{\rm max} = 0.62 \text{ e} \text{ Å}^{-3}$
62 parameters	$\Delta \rho_{\rm min} = -0.78 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

All H atoms were located by difference Fourier synthesis and the H atoms bonded to carbon were refined with fixed individual displacement parameters $[U(H) = 1.2U_{eq}(C) \text{ or } 1.5U_{eq}(C_{methyl})]$ using a riding model with aromatic C-H = 0.95 Å or methyl C-H = 0.98 Å. The H atoms of the methyl groups in (I) are disordered. Two orientations differing by a 60° rotation about the $C_{Ph}-C_{Me}$ bond could be identified.

For both compounds, data collection: *SMART* (Siemens, 1995); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1995);

program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *SHELXL*97.

References

- Adley, A. D., Bird, P. H., Fraser, A. R. & Onyszchuk, M. (1972). *Inorg. Chem.* **11**, 1402–1409.
- Bechstein, O., Ziemer, B., Hass, D., Troyanov, S. I., Rybakov, V. B. & Maso, G. N. (1990). Z. Anorg. Allg. Chem. 582, 211–216.
- Bolte, M., Hensen, K. & Faber, A. (2000). Acta Cryst. C56, e497-498.
- Chuit, C., Corriu, R. J. P., Reye, C. & Young, J. C. (1993). Chem. Rev. 93, 1371– 1448.
- Faber, A. (2000). PhD thesis, University of Frankfurt, Germany.
- Hensen, K., Faber, A. & Bolte, M. (1999). Acta Cryst. C55, 1774-1775.
- Hensen, K., Mayr-Stein, R., Spangenberg, B., & Bolte, M. (2000). *Acta Cryst.* C56, 610–613.
- Hensen, K., Mayr-Stein, R., Spangenberg, B., Bolte, M. & Rühl, St. (2000). Z. Naturforsch. Teil B, 55, 248–252.
- Hensen, K., Mayr-Stein, R., Stumpf, T., Pickel, P., Bolte, M. & Fleischer, H. (2000). J. Chem. Soc. Dalton Trans. pp. 473–477.
- Hensen, K., Stumpf, T., Bolte, M., Näther, C. & Fleischer, H. (1998). J. Am Chem. Soc. 120, 10402–10408.
- Kane, K. M., Lorenz, C. R., Heilman, D. M. & Lemke, F. R. (1998). Inorg. Chem. 37, 669–673.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1995). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.